Footpoint excitation of standing acoustic waves in coronal loops

نویسندگان

  • Y. Taroyan
  • R. Erdélyi
  • J. G. Doyle
  • S. J. Bradshaw
چکیده

A new theoretical model for the study of slow standing sausage mode oscillations in hot (T > 6 MK) active region coronal loops is presented. These oscillations are observed by the SUMER spectrometer on board the SoHO satellite. The model contains the transition region and the upper chromosphere which enables us to study the entire process of hot loop oscillations – from the impulsive footpoint excitation phase to the rapid damping phase. It is shown that standing acoustic waves can be excited by an impulsive heat deposition at the chromospheric footpoint of a loop if the duration of the pulse matches the fundamental mode period. The pulse is immediately followed by a standing wave consistent with the SUMER observations in hot loops. The amount of released energy determines the oscillation amplitude. The combined effects of thermal conduction and radiation on the behaviour of the standing acoustic waves in hot gravitationally stratified loops are investigated. In addition to damping, these effects lead to downflows which are superimposed on the oscillations. The implications of the results in coronal seismology are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temporal evolution of resonant absorption in coronal loops Excitation by footpoint motions normal to the magnetic surfaces

In this paper we study the temporal evolution of linear MHD waves excited by footpoint motions using an ideal, pressureless slab model for coronal loops. We choose the footpoint motions to be polarised normal to the magnetic flux surfaces such that only fast waves are driven directly, including the so-called quasi-modes. We have derived a formal analytical solution as a superposition of eigenmo...

متن کامل

Direct excitation of resonant torsional Alfvén waves by footpoint motions

The present paper studies the heating of coronal loops by linear resonant Alfvén waves that are excited by the motions of the photospheric footpoints of the magnetic field lines. The analysis is restricted to torsionally polarised footpoint motions in an axially symmetric system so that only torsional Alfvénwaves are excited. For this subclass of footpointmotions, the Alfvén and cusp singularit...

متن کامل

3-D numerical simulations of coronal loops oscillations

We present numerical results of 3-D MHD model of a dipole active region field containing a loop with a higher density than its surroundings. We study different ways of excitation of vertical kink oscillations by velocity perturbation: as an initial condition, and as an impulsive excitation with a pulse of a given position, duration, and amplitude. These properties are varied in the parametric s...

متن کامل

Random driven fast waves in coronal loops I. Without coupling to Alfvén waves

In this paper we study the time evolution of fast MHD waves in a coronal loop driven by footpoint motions in linear ideal MHD. We restrict the analysis to footpoint motions polarized normal to the magnetic flux surfaces such that the fast waves are driven directly. By supposing the azimuthal wave number ky to be zero, the fast waves are decoupled from the Alfvén waves. As a first step to real s...

متن کامل

برانگیختگی و میرایی نوسانات عرضی در حلقه‌های تاج توسط پدیده ویک

Transversal oscillation of coronal loops that are interpreted as signatures of magneto hydrodynamics (MHD) waves are observed frequently in active region corona loops. The amplitude of this oscillation has been found to be strongly attenuated. The damping of transverse oscillation may be produced by the dissipation mechanism and the wake of the traveling disturbance. The damping of transversal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005